z-logo
open-access-imgOpen Access
Real Time <em>In Vivo</em> Tracking of Thymocytes in the Anterior Chamber of the Eye by Laser Scanning Microscopy
Author(s) -
Elisa Oltra,
Alejandro Caicedo
Publication year - 2018
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/58236
Subject(s) - in vivo , intravital microscopy , cornea , ex vivo , transplantation , biology , bioluminescence imaging , pathology , preclinical imaging , microbiology and biotechnology , anatomy , neuroscience , medicine , surgery , cell culture , transfection , genetics , luciferase
The purpose of the method being presented is to show, for the first time, the transplant of newborn thymi into the anterior eye chamber of isogenic adult mice for in vivo longitudinal real-time monitoring of thymocytes´ dynamics within a vascularized thymus segment. Following the transplantation, laser scanning microscopy (LSM) through the cornea allows in vivo noninvasive repeated imaging at cellular resolution level. Importantly, the approach adds to previous intravital T-cell maturation imaging models the possibility for continuous progenitor cell recruitment and mature T-cell egress recordings in the same animal. Additional advantages of the system are the transparency of the grafted area, permitting macroscopic rapid monitoring of the implanted tissue, and the accessibility to the implant allowing for localized in addition to systemic treatments. The main limitation being the volume of the tissue that fits in the reduced space of the eye chamber which demands for lobe trimming. Organ integrity is maximized by dissecting thymus lobes in patterns previously shown to be functional for mature T-cell production. The technique is potentially suited to interrogate a milieu of medically relevant questions related to thymus function that include autoimmunity, immunodeficiency and central tolerance; processes which remain mechanistically poorly defined. The fine dissection of mechanisms guiding thymocyte migration, differentiation and selection should lead to novel therapeutic strategies targeting developing T cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom