A Pipette-Tip Based Method for Seeding Cells to Droplet Microfluidic Platforms
Author(s) -
Nidhi Sinha,
Nikita Subedi,
Florian Wimmers,
Melf Soennichsen,
Jurjen Tel
Publication year - 2019
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/57848
Subject(s) - microfluidics , pipette , cell encapsulation , nanotechnology , single cell analysis , materials science , cell , biological system , biophysics , chemistry , biology , biochemistry
Amongst various microfluidic platform designs frequently used for cellular analysis, droplet-microfluidics provides a robust tool for isolating and analyzing cells at the single-cell level by eliminating the influence of external factors on the cellular microenvironment. Encapsulation of cells in droplets is dictated by the Poisson distribution as a function of the number of cells present in each droplet and the average number of cells per volume of droplet. Primary cells, especially immune cells, or clinical specimens can be scarce and loss-less encapsulation of cells remains challenging. In this paper, we present a new methodology that uses pipette-tips to load cells to droplet-based microfluidic devices without the significant loss of cells. With various cell types , we demonstrate efficient cell encapsulation in droplets that closely corresponds to the encapsulation efficiency predicted by the Poisson distribution. Our method ensures loss-less loading of cells to microfluidic platforms and can be easily adapted for downstream single cell analysis, e.g., to decode cellular interactions between different cell types.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom