Fabrication and Testing of Catalytic Aerogels Prepared Via Rapid Supercritical Extraction
Author(s) -
Ann M. Anderson,
Bradford A. Bruno,
Elizabeth A Donlon,
Luisa F. Posada,
Mary K. Carroll
Publication year - 2018
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/57075
Subject(s) - aerogel , oxidizing agent , catalysis , supercritical fluid , materials science , nanoparticle , chemical engineering , extraction (chemistry) , supercritical fluid extraction , metal , copper , supercritical drying , nanotechnology , chromatography , chemistry , organic chemistry , metallurgy , engineering
Protocols for preparing and testing catalytic aerogels by incorporating metal species into silica and alumina aerogel platforms are presented. Three preparation methods are described: (a) the incorporation of metal salts into silica or alumina wet gels using an impregnation method; (b) the incorporation of metal salts into alumina wet gels using a co-precursor method; and (c) the addition of metal nanoparticles directly into a silica aerogel precursor mixture. The methods utilize a hydraulic hot press, which allows for rapid (<6 h) supercritical extraction and results in aerogels of low density (0.10 g/mL) and high surface area (200-800 m 2 /g). While the work presented here focuses on the use of copper salts and copper nanoparticles, the approach can be implemented using other metal salts and nanoparticles. A protocol for testing the three-way catalytic ability of these aerogels for automotive pollution mitigation is also presented. This technique uses custom-built equipment, the Union Catalytic Testbed (UCAT), in which a simulated exhaust mixture is passed over an aerogel sample at a controlled temperature and flow rate. The system is capable of measuring the ability of the catalytic aerogels, under both oxidizing and reducing conditions, to convert CO, NO and unburned hydrocarbons (HCs) to less harmful species (CO2, H2O and N2). Example catalytic results are presented for the aerogels described.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom