z-logo
open-access-imgOpen Access
Concurrent Recording of Co-localized Electroencephalography and Local Field Potential in Rodent
Author(s) -
Sungmin Kang,
Michael BruynsHaylett,
Yurie Hayashi,
Ying Zheng
Publication year - 2017
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/56447
Subject(s) - electroencephalography , local field potential , neocortex , neuroscience , multielectrode array , microelectrode , eeg fmri , neural activity , computer science , pattern recognition (psychology) , artificial intelligence , psychology , physics , electrode , quantum mechanics
Although electroencephalography (EEG) is widely used as a non-invasive technique for recording neural activities of the brain, our understanding of the neurogenesis of EEG is still very limited. Local field potentials (LFPs) recorded via a multi-laminar microelectrode can provide a more detailed account of simultaneous neural activity across different cortical layers in the neocortex, but the technique is invasive. Combining EEG and LFP measurements in a pre-clinical model can greatly enhance understanding of the neural mechanisms involved in the generation of EEG signals, and facilitate the derivation of a more realistic and biologically accurate mathematical model of EEG. A simple procedure for acquiring concurrent and co-localized EEG and multi-laminar LFP signals in the anesthetized rodent is presented here. We also investigated whether EEG signals were significantly affected by a burr hole drilled in the skull for the insertion of a microelectrode. Our results suggest that the burr hole has a negligible impact on EEG recordings.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom