z-logo
open-access-imgOpen Access
<em>In Vitro</em> Differentiation of Human Pluripotent Stem Cells into Trophoblastic Cells
Author(s) -
Jianle Wang,
Montserrat C. Anguera
Publication year - 2017
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/55268
Subject(s) - induced pluripotent stem cell , trophoblast , biology , microbiology and biotechnology , blastocyst , embryonic stem cell , stem cell , cellular differentiation , embryoid body , immunology , placenta , embryo , embryogenesis , genetics , fetus , gene , pregnancy
The placenta is the first organ to develop during embryogenesis and is required for the survival of the developing embryo. The placenta is comprised of various trophoblastic cells that differentiate from the extra-embryonic trophectoderm cells of the preimplantation blastocyst. As such, our understanding of the early differentiation events of the human placenta is limited because of ethical and legal restrictions on the isolation and manipulation of human embryogenesis. Human pluripotent stem cells (hPSCs) are a robust model system for investigating human development and can also be differentiated in vitro into trophoblastic cells that express markers of the various trophoblast cell types. Here, we present a detailed protocol for differentiating hPSCs into trophoblastic cells using bone morphogenic protein 4 and inhibitors of the Activin/Nodal signaling pathways. This protocol generates various trophoblast cell types that can be transfected with siRNAs for investigating loss-of-function phenotypes or can be infected with pathogens. Additionally, hPSCs can be genetically modified and then differentiated into trophoblast progenitors for gain-of-function analyses. This in vitro differentiation method for generating human trophoblasts starting from hPSCs overcomes the ethical and legal restrictions of working with early human embryos, and this system can be used for a variety of applications, including drug discovery and stem cell research.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom