z-logo
open-access-imgOpen Access
Induction of Accelerated Atherosclerosis in Mice: The "Wire-Injury" Model
Author(s) -
Adelina Curaj,
Wu Zhoujun,
Mareike Staudt,
Elisa A. Liehn
Publication year - 2020
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/54571
Subject(s) - neointima , medicine , angioplasty , myocardial infarction , cardiology , thrombus , blood flow , stroke (engine) , endarterectomy , stent , revascularization , endothelium , restenosis , pathology , carotid arteries , mechanical engineering , engineering
Atherosclerosis is a proliferative fibro-inflammatory disease developing in the arterial wall, inducing a deficient blood flow or a lack of blood flow. Moreover, by rupture of the defective vascular wall, atherosclerosis induces occlusive thrombus formation, which represents the main cause of myocardial infarction or stroke and the most frequent cause of death. Despite the advances in the cardiovascular field, many questions remain unanswered, and additional basic research is essential to improve our understanding of the molecular mechanisms during atherosclerosis and its effects. Due to limited clinical studies, there is a need for representative animal models recreating atherosclerotic conditions such as neointima formation after stent implantation, balloon angioplasty, or endarterectomy. Since the mouse presents many advantages and is the most frequently used model for studying molecular processes, the current study proposes an invasive procedure of endothelial denudation, also known as the wire-injury model, which is representative of the human condition of neointima formation in arteries after revascularization procedures.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom