z-logo
open-access-imgOpen Access
Methods for Precisely Localized Transfer of Cells or DNA into Early Postimplantation Mouse Embryos
Author(s) -
Yali Huang,
Ron Wilkie,
Valerie Wilson
Publication year - 2015
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/53295
Subject(s) - electroporation , microbiology and biotechnology , embryo , biology , transfection , organogenesis , cell culture , gastrulation , in vitro , ex vivo , cell , in vivo , genetics , embryogenesis , gene
Manipulation and culture of early mouse embryos is a powerful yet largely under-utilized technology enhancing the value of this model system. Conversely, cell culture has been widely used in developmental biology studies. However, it is important to determine whether in vitro cultured cells truly represent in vivo cell types. Grafting cells into embryos, followed by an assessment of their contribution during development is a useful method to determine the potential of in vitro cultured cells. In this study, we describe a method for grafting cells into a defined site of early postimplantation mouse embryos, followed by ex vivo culture. We also introduce an optimized electroporation method that uses glass capillaries of known diameter, allowing precise localization and adjustment of the number of cells receiving exogenous DNA with both high transfection efficiency and low cell death. These techniques, which do not require any specialized equipment, render experimental manipulations of the gastrulation and early organogenesis-stage mouse embryo possible, allowing analysis of commitment in cultured cell subpopulations and the effect of genetic manipulations in situ on cell differentiation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom