z-logo
open-access-imgOpen Access
Single Molecule Fluorescence Microscopy on Planar Supported Bilayers
Author(s) -
Markus Axmann,
Gerhard J. Schütz,
Johannes B. Huppa
Publication year - 2015
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/53158
Subject(s) - total internal reflection fluorescence microscope , microscopy , exocytosis , endocytosis , nanotechnology , fluorescence microscope , photoactivated localization microscopy , lipid bilayer , microscope , biophysics , materials science , chemistry , optics , membrane , fluorescence , super resolution microscopy , physics , biology , cell , biochemistry
In the course of a single decade single molecule microscopy has changed from being a secluded domain shared merely by physicists with a strong background in optics and laser physics to a discipline that is now enjoying vivid attention by life-scientists of all venues (1). This is because single molecule imaging has the unique potential to reveal protein behavior in situ in living cells and uncover cellular organization with unprecedented resolution below the diffraction limit of visible light (2). Glass-supported planar lipid bilayers (SLBs) are a powerful tool to bring cells otherwise growing in suspension in close enough proximity to the glass slide so that they can be readily imaged in noise-reduced Total Internal Reflection illumination mode (3,4). They are very useful to study the protein dynamics in plasma membrane-associated events as diverse as cell-cell contact formation, endocytosis, exocytosis and immune recognition. Simple procedures are presented how to generate highly mobile protein-functionalized SLBs in a reproducible manner, how to determine protein mobility within and how to measure protein densities with the use of single molecule detection. It is shown how to construct a cost-efficient single molecule microscopy system with TIRF illumination capabilities and how to operate it in the experiment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom