z-logo
open-access-imgOpen Access
Visualization of Chondrocyte Intercalation and Directional Proliferation via Zebrabow Clonal Cell Analysis in the Embryonic Meckel’s Cartilage
Author(s) -
Lucie Rochard,
Irving T. C. Ling,
Yawei Kong,
Eric C. Liao
Publication year - 2015
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/52935
Subject(s) - cartilage , microbiology and biotechnology , chondrogenesis , convergent extension , endochondral ossification , chondrocyte , biology , neural crest , anatomy , morphogenesis , embryogenesis , embryo , genetics , gastrulation , gene
Development of the vertebrate craniofacial structures requires precise coordination of cell migration, proliferation, adhesion and differentiation. Patterning of the Meckel's cartilage, a first pharyngeal arch derivative, involves the migration of cranial neural crest (CNC) cells and the progressive partitioning, proliferation and organization of differentiated chondrocytes. Several studies have described CNC migration during lower jaw morphogenesis, but the details of how the chondrocytes achieve organization in the growth and extension of Meckel's cartilage remains unclear. The sox10 restricted and chemically induced Cre recombinase-mediated recombination generates permutations of distinct fluorescent proteins (RFP, YFP and CFP), thereby creating a multi-spectral labeling of progenitor cells and their progeny, reflecting distinct clonal populations. Using confocal time-lapse photography, it is possible to observe the chondrocytes behavior during the development of the zebrafish Meckel's cartilage. Multispectral cell labeling enables scientists to demonstrate extension of the Meckel's chondrocytes. During extension phase of the Meckel's cartilage, which prefigures the mandible, chondrocytes intercalate to effect extension as they stack in an organized single-cell layered row. Failure of this organized intercalating process to mediate cell extension provides the cellular mechanistic explanation for hypoplastic mandible that we observe in mandibular malformations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom