z-logo
open-access-imgOpen Access
Juxtacellular Monitoring and Localization of Single Neurons within Sub-cortical Brain Structures of Alert, Head-restrained Rats
Author(s) -
Jeffrey D. Moore,
Martin Deschênes,
David Kleinfeld
Publication year - 2015
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/51453
Subject(s) - neuroscience , neurophysiology , electrophysiology , somatosensory system , premovement neuronal activity , neuron , computer science , multielectrode array , brain activity and meditation , thalamus , electroencephalography , psychology , microelectrode , chemistry , electrode
There are a variety of techniques to monitor extracellular activity of single neuronal units. However, monitoring this activity from deep brain structures in behaving animals remains a technical challenge, especially if the structures must be targeted stereotaxically. This protocol describes convenient surgical and electrophysiological techniques that maintain the animal's head in the stereotaxic plane and unambiguously isolate the spiking activity of single neurons. The protocol combines head restraint of alert rodents, juxtacellular monitoring with micropipette electrodes, and iontophoretic dye injection to identify the neuron location in post-hoc histology. While each of these techniques is in itself well-established, the protocol focuses on the specifics of their combined use in a single experiment. These neurophysiological and neuroanatomical techniques are combined with behavioral monitoring. In the present example, the combined techniques are used to determine how self-generated vibrissa movements are encoded in the activity of neurons within the somatosensory thalamus. More generally, it is straightforward to adapt this protocol to monitor neuronal activity in conjunction with a variety of behavioral tasks in rats, mice, and other animals. Critically, the combination of these methods allows the experimenter to directly relate anatomically-identified neurophysiological signals to behavior.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom