z-logo
open-access-imgOpen Access
Monitoring the Wall Mechanics During Stent Deployment in a Vessel
Author(s) -
Brian D. Steinert,
Shijia Zhao,
Linxia Gu
Publication year - 2012
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/3945
Subject(s) - stent , restenosis , arterial wall , biomedical engineering , deformation (meteorology) , strain (injury) , materials science , composite material , anatomy , radiology , medicine , cardiology
Clinical trials have reported different restenosis rates for various stent designs. It is speculated that stent-induced strain concentrations on the arterial wall lead to tissue injury, which initiates restenosis. This hypothesis needs further investigations including better quantifications of non-uniform strain distribution on the artery following stent implantation. A non-contact surface strain measurement method for the stented artery is presented in this work. ARAMIS stereo optical surface strain measurement system uses two optical high speed cameras to capture the motion of each reference point, and resolve three dimensional strains over the deforming surface. As a mesh stent is deployed into a latex vessel with a random contrasting pattern sprayed or drawn on its outer surface, the surface strain is recorded at every instant of the deformation. The calculated strain distributions can then be used to understand the local lesion response, validate the computational models, and formulate hypotheses for further in vivo study.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom