z-logo
open-access-imgOpen Access
Microwave Assisted Rapid Diagnosis of Plant Virus Diseases by Transmission Electron Microscopy
Author(s) -
Bernd Zechmann,
Gerhard Graggaber,
Günther Zellnig
Publication year - 2011
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/2950
Subject(s) - tobacco mosaic virus , ultrastructure , fixation (population genetics) , transmission electron microscopy , sample preparation , plant virus , microwave , nicotiana tabacum , virus , materials science , staining , biology , biomedical engineering , virology , pathology , chemistry , nanotechnology , medicine , botany , computer science , chromatography , biochemistry , telecommunications , gene
Investigations of ultrastructural changes induced by viruses are often necessary to clearly identify viral diseases in plants. With conventional sample preparation for transmission electron microscopy (TEM) such investigations can take several days and are therefore not suited for a rapid diagnosis of plant virus diseases. Microwave fixation can be used to drastically reduce sample preparation time for TEM investigations with similar ultrastructural results as observed after conventionally sample preparation. Many different custom made microwave devices are currently available which can be used for the successful fixation and embedding of biological samples for TEM investigations. In this study we demonstrate on Tobacco Mosaic Virus (TMV) infected Nicotiana tabacum plants that it is possible to diagnose ultrastructural alterations in leaves in about half a day by using microwave assisted sample preparation for TEM. We have chosen to perform this study with a commercially available microwave device as it performs sample preparation almost fully automatically in contrast to the other available devices where many steps still have to be performed manually and are therefore more time and labor consuming. As sample preparation is performed fully automatically negative staining of viral particles in the sap of the remaining TMV-infected leaves and the following examination of ultrastructure and size can be performed during fixation and embedding.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom