Isolation of Brain-infiltrating Leukocytes
Author(s) -
Reghann G. LaFranceCorey,
Charles L. Howe
Publication year - 2011
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/2747
Subject(s) - percoll , flow cytometry , population , immune system , immunology , biology , isoflurane , microglia , medicine , pathology , centrifugation , inflammation , anesthesia , biochemistry , environmental health
We describe a method for preparing brain infiltrating leukocytes (BILs) from mice. We demonstrate how to infect mice with Theiler's murine encephalomyelitis virus (TMEV) via a rapid intracranial injection technique and how to purify a leukocyte-enriched population of infiltrating cells from whole brain. Briefly, mice are anesthetized with isoflurane in a closed chamber and are free-hand injected with a Hamilton syringe into the frontal cortex. Mice are then killed at various times after infection by isoflurane overdose and whole brains are extracted and homogenized in RPMI with a Tenbroeck tissue grinder. Brain homogenates are centrifuged through a continuous 30% Percoll gradient to remove the myelin and other cell debris. The cell suspension is then strained at 40 μm, washed and centrifuged on a discontinuous Ficoll-Paque Plus gradient to select and purify the leukocytes. The leukocytes are then washed and resuspended in appropriate buffers for immunophenotyping by flow cytometry. Flow cytometry reveals a population of innate immune cells at the early stages of infection in C57BL/6 mice. At 24 hours post infection, multiple subsets of immune cells are present in the BILs, with an enriched population of Gr1(+), CD11b(+) and F4/80(+)cells. Therefore, this method is useful in characterizing the immune response to acute infection in the brain.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom