z-logo
open-access-imgOpen Access
DISCUSSION ON QUOTIENT BI-SPACE AND ON PAIRWISE REGULAR AND NORMAL SPACES IN BITOPOLOGICAL SPACES
Author(s) -
M. Arunmaran,
K. Kannan
Publication year - 2019
Publication title -
advances in mathematical sciences
Language(s) - English
Resource type - Journals
ISSN - 2664-598X
DOI - 10.37516/adv.math.sci.2019.0051
Subject(s) - hausdorff space , quotient space (topology) , mathematics , quotient , space (punctuation) , normal space , pairwise comparison , open set , topological space , combinatorics , pure mathematics , topology (electrical circuits) , discrete mathematics , topological vector space , computer science , statistics , operating system
In this paper, we introduce the concept “Quotient bi-space” in bitopological spaces. In addition, we investigate the results related with quotient bi-space. Moreover, we have discussed the results related with pairwise regular and normal spaces in bitopological space. For a non-empty set X, we can define two topologies (these may be same or distinct topologies) τ1 and τ2 on X. Then, the triple (X, τ1 , τ2 ) is known as bitopological space. Let (X, τ1 , τ2 ) be bitopological space, (Y, σ1 , σ2 ) be trivial bitopological space and f : (X, τ1 , τ2 ) → (Y, σ1 , σ2 ) be onto map. Then f is τ1 τ2 −continuous map. If η = {G (σ −open set in Y ) : f ^{−1} (G) is τ1 τ2 − open in X} then η is a topology on Y . Moreover, if (Y, σ, σ) be a quotient bi-space of (X, τ1 , τ2) under f : (X, τ1 , τ2 ) → (Y, σ, σ) and g : (Y, σ, σ) → (Z, η1 , η2 ) be a map, then, gis σ − continuous if and only if g ◦ f : (X, τ1 , τ2 ) → (Z, η1 , η2 ) is τ1 τ2 −continuous. Let (X, τ1 , τ2) be bitopological space and A be τ1 τ2 − compact subset of pairwise Hausdorff space X. Then, A is τ1 τ2 − closed set. Finally, we have discussed the following : Let (X, τ1 , τ2 ) be bitopological space and τ1 τ2 −compact pairwise Hausdorff space. Then, the space (X, τ1 , τ2 ) is pairwise normal.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom