z-logo
open-access-imgOpen Access
HESnW: History Encounters-Based Spray-and-Wait Routing Protocol for Delay Tolerant Networks
Author(s) -
Shunyi Gan,
Jipeng Zhou,
Kaimin Wei
Publication year - 2017
Publication title -
journal of information processing systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.288
H-Index - 23
eISSN - 2092-805X
pISSN - 1976-913X
DOI - 10.3745/jips.03.0075
Subject(s) - computer science , protocol (science) , zone routing protocol , computer network , routing protocol , routing (electronic design automation) , dynamic source routing , distributed computing , medicine , alternative medicine , pathology
Mobile nodes can't always connect each other in DTNs (delay tolerant networks). Many DTN routing protocols that favor the “multi-hop forwarding” are proposed to solve these network problems. But they also lead to intolerant delivery cost so that designing a overhead-efficient routing protocol which is able to perform well in delivery ratio with lower delivery cost at the same time is valuable. Therefore, we utilize the small-world property and propose a new delivery metric called multi-probability to design our relay node selection principles that nodes with lower delivery predictability can also be selected to be the relay nodes if one of their history nodes has higher delivery predictability. So, we can find more potential relay nodes to reduce the forwarding overhead of successfully delivered messages through our proposed algorithm called HESnW. We also apply our new messages copies allocation scheme to optimize the routing performance. Comparing to existing routing algorithms, simulation results show that HESnW can reduce the delivery cost while it can also obtain a rather high delivery ratio.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom