z-logo
open-access-imgOpen Access
Content-based Image Retrieval Using Texture Features Extracted from Local Energy and Local Correlation of Gabor Transformed Images
Author(s) -
Hee-Hyung Bu,
Nam-Chul Kim,
Bae-Ho Lee,
SungHo Kim
Publication year - 2017
Publication title -
journal of information processing systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.288
H-Index - 23
eISSN - 2092-805X
pISSN - 1976-913X
DOI - 10.3745/jips.02.0075
Subject(s) - computer science , artificial intelligence , pattern recognition (psychology) , texture (cosmology) , computer vision , content based image retrieval , image texture , gabor filter , correlation , image (mathematics) , image retrieval , image processing , mathematics , geometry
In this paper, a texture feature extraction method using local energy and local correlation of Gabor transformed images is proposed and applied to an image retrieval system. The Gabor wavelet is known to be similar to the response of the human visual system. The outputs of the Gabor transformation are robust to variants of object size and illumination. Due to such advantages, it has been actively studied in various fields such as image retrieval, classification, analysis, etc. In this paper, in order to fully exploit the superior aspects of Gabor wavelet, local energy and local correlation features are extracted from Gabor transformed images and then applied to an image retrieval system. Some experiments are conducted to compare the performance of the proposed method with those of the conventional Gabor method and the popular rotation-invariant uniform local binary pattern (RULBP) method in terms of precision vs recall. The Mahalanobis distance is used to measure the similarity between a query image and a database (DB) image. Experimental results for Corel DB and VisTex DB show that the proposed method is superior to the conventional Gabor method. The proposed method also yields precision and recall 6.58% and 3.66% higher on average in Corel DB, respectively, and 4.87% and 3.37% higher on average in VisTex DB, respectively, than the popular RULBP method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom