Sector Based Multiple Camera Collaboration for Active Tracking Applications
Author(s) -
Sangjin Hong,
Kyungrog Kim,
Nammee Moon
Publication year - 2017
Publication title -
journal of information processing systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.288
H-Index - 23
eISSN - 2092-805X
pISSN - 1976-913X
DOI - 10.3745/jips.02.0074
Subject(s) - computer science , computer vision , tracking (education) , artificial intelligence , human–computer interaction , computer graphics (images) , psychology , pedagogy
This paper presents a scalable multiple camera collaboration strategy for active tracking applications in large areas. The proposed approach is based on distributed mechanism but emulates the master-slave mechanism. The master and slave cameras are not designated but adaptively determined depending on the object dynamic and density distribution. Moreover, the number of cameras emulating the master is not fixed. The collaboration among the cameras utilizes global and local sectors in which the visual correspondences among different cameras are determined. The proposed method combines the local information to construct the global information for emulating the master-slave operations. Based on the global information, the load balancing of active tracking operations is performed to maximize active tracking coverage of the highly dynamic objects. The dynamics of all objects visible in the local camera views are estimated for effective coverage scheduling of the cameras. The active tracking synchronization timing information is chosen to maximize the overall monitoring time for general surveillance operations while minimizing the active tracking miss. The real-time simulation result demonstrates the effectiveness of the proposed method
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom