z-logo
open-access-imgOpen Access
Unsupervised Segmentation of Images Based on Shuffled Frog-Leaping Algorithm
Author(s) -
Amel Tehami,
Hadria Fizazi
Publication year - 2017
Publication title -
journal of information processing systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.288
H-Index - 23
eISSN - 2092-805X
pISSN - 1976-913X
DOI - 10.3745/jips.02.0055
Subject(s) - computer science , artificial intelligence , segmentation , pattern recognition (psychology) , computer vision , algorithm
The image segmentation is the most important operation in an image processing system. It is located at the joint between the processing and analysis of the images. Unsupervised segmentation aims to automatically separate the image into natural clusters. However, because of its complexity several methods have been proposed, specifically methods of optimization. In our work we are interested to the technique SFLA (Shuffled Frog-Leaping Algorithm). It’s a memetic meta-heuristic algorithm that is based on frog populations in nature searching for food. This paper proposes a new approach of unsupervised image segmentation based on SFLA method. It is implemented and applied to different types of images. To validate the performances of our approach, we performed experiments which were compared to the method of K-means.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom