z-logo
open-access-imgOpen Access
Wood chip denitrification bioreactors can reduce nitrate in tile drainage
Author(s) -
Tim Hartz,
Richard Smith,
M. D. Cahn,
Thomas G. Bottoms,
Sebastian Castro Bustamante,
Laura Tourte,
Kenneth S. Johnson,
Luke J. Coletti
Publication year - 2017
Publication title -
california agriculture
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.472
H-Index - 25
eISSN - 2160-8091
pISSN - 0008-0845
DOI - 10.3733/ca.2017a0007
Subject(s) - tile drainage , denitrification , denitrifying bacteria , nitrate , bioreactor , effluent , environmental science , pulp and paper industry , woodchips , environmental chemistry , chemistry , environmental engineering , carbon fibers , drainage , nitrogen , biology , ecology , materials science , composite number , organic chemistry , composite material , engineering
Widespread contamination of surface water with nitrate-nitrogen (NO3-N) has led to increasing regulatory pressure to minimize NO3-N release from agricultural operations. We evaluated the use of wood chip denitrification bioreactors to remove NO3-N from tile drain effluent on two vegetable farms in Monterey County. Across several years of operation, denitrification in the bioreactors reduced NO3-N concentration by an average of 8 to 10 milligrams per liter (mg L−1) per day during the summer and approximately 5 mg L−1 per day in winter. However, due to the high NO3-N concentration in the tile drainage (60 to 190 mg L−1), water discharged from the bioreactors still contained NO3-N far above the regulatory target of < 10 mg L−1. Carbon enrichment (applying soluble carbon to stimulate denitrifying bacteria) using methanol as the carbon source substantially increased denitrification, both in laboratory experiments and in the on-farm bioreactors. Using a carbon enrichment system in which methanol was proportionally injected based on tile drainage NO3-N concentration allowed nearly complete NO3-N removal with minimal adverse environmental effects

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom