z-logo
open-access-imgOpen Access
Note on the Multicolour Size-Ramsey Number for Paths,
Author(s) -
Andrzej Dudek,
Paweł Prałat
Publication year - 2018
Publication title -
the electronic journal of combinatorics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.703
H-Index - 52
eISSN - 1097-1440
pISSN - 1077-8926
DOI - 10.37236/7954
Subject(s) - ramsey's theorem , combinatorics , mathematics , monochromatic color , graph , omega , integer (computer science) , upper and lower bounds , complete graph , discrete mathematics , physics , mathematical analysis , quantum mechanics , computer science , optics , programming language
The size-Ramsey number $\hat{R}(F,r)$ of a graph $F$ is the smallest integer $m$ such that there exists a graph $G$ on $m$ edges with the property that any colouring of the edges of $G$ with $r$ colours yields a monochromatic copy of $F$. In this short note, we give an alternative proof of the recent result of Krivelevich that $\hat{R}(P_n,r) = O((\log r)r^2 n)$. This upper bound is nearly optimal, since it is also known that $\hat{R}(P_n,r) = \Omega(r^2 n)$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom