z-logo
open-access-imgOpen Access
Vizing's 2-Factor Conjecture Involving Toughness and Maximum Degree Conditions
Author(s) -
Jinko Kanno,
Songling Shan
Publication year - 2019
Publication title -
the electronic journal of combinatorics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.703
H-Index - 52
eISSN - 1097-1440
pISSN - 1077-8926
DOI - 10.37236/7353
Subject(s) - combinatorics , mathematics , conjecture , degree (music) , simple graph , hamiltonian path , delta , vertex (graph theory) , graph , discrete mathematics , physics , astronomy , acoustics
Let $G$ be a simple graph, and let $\Delta(G)$ and $\chi'(G)$ denote the maximum degree and chromatic index of $G$, respectively. Vizing proved that $\chi'(G)=\Delta(G)$ or $\Delta(G)+1$. We say $G$ is $\Delta$-critical if $\chi'(G)=\Delta+1$ and $\chi'(H)<\chi'(G)$ for every proper subgraph $H$ of $G$. In 1968, Vizing conjectured that if $G$ is a $\Delta$-critical graph, then $G$ has a 2-factor. Let $G$ be an $n$-vertex $\Delta$-critical graph. It was proved that if $\Delta(G)\ge n/2$, then $G$ has a 2-factor; and that if $\Delta(G)\ge 2n/3+12$, then $G$ has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough graph with at least three vertices has a 2-factor. We investigate the existence of a 2-factor in a $\Delta$-critical graph under "moderate" given toughness and maximum degree conditions. In particular, we show that if $G$ is an $n$-vertex $\Delta$-critical graph with toughness at least 3/2 and with maximum degree at least $n/3$, then $G$ has a 2-factor. In addition, we develop new techniques in proving the existence of 2-factors in graphs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom