z-logo
open-access-imgOpen Access
Large Monochromatic Components in Edge Colored Graphs with a Minimum Degree Condition
Author(s) -
András Gyárfás,
Gábor N. Sárközy
Publication year - 2017
Publication title -
the electronic journal of combinatorics
Language(s) - English
Resource type - Journals
eISSN - 1097-1440
pISSN - 1077-8926
DOI - 10.37236/7049
Subject(s) - combinatorics , mathematics , monochromatic color , conjecture , degree (music) , connectivity , graph , connected component , order (exchange) , edge coloring , discrete mathematics , complete graph , graph power , line graph , physics , finance , acoustics , optics , economics
It is well-known that in every $k$-coloring of the edges of the complete graph $K_n$ there is a monochromatic connected component of order at least ${n\over k-1}$. In this paper we study an extension of this problem by replacing complete graphs by graphs of large minimum degree. For $k=2$ the authors proved that $\delta(G)\ge{3n\over 4}$ ensures a monochromatic connected component with at least $\delta(G)+1$ vertices in every $2$-coloring of the edges of a graph $G$ with $n$ vertices. This result is sharp, thus for $k=2$ we really need a complete graph to guarantee that one of the colors has a monochromatic connected spanning subgraph. Our main result here is  that for larger values of $k$ the situation is different, graphs of minimum degree $(1-\epsilon_k)n$ can replace complete graphs and still there is a monochromatic connected component of order at least ${n\over k-1}$, in fact $$\delta(G)\ge \left(1 - \frac{1}{1000(k-1)^9}\right)n$$ suffices. Our second result is an improvement of this bound for $k=3$. If the edges of $G$ with  $\delta(G)\geq {9n\over 10}$ are $3$-colored, then there is a monochromatic component of order at least ${n\over 2}$. We conjecture that this can be improved to ${7n\over 9}$ and for general $k$ we conjecture the following: if $k\geq 3$ and  $G$ is a graph of order $n$ such that $\delta(G)\geq \left( 1 - \frac{k-1}{k^2}\right)n$, then in any $k$-coloring of the edges of $G$ there is a monochromatic connected component of order at least ${n\over k-1}$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom