Anti-van der Waerden Numbers of 3-Term Arithmetic Progression
Author(s) -
Zhanar Berikkyzy,
Alex Shulte,
Michael E. Young
Publication year - 2017
Publication title -
the electronic journal of combinatorics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.703
H-Index - 52
eISSN - 1097-1440
pISSN - 1077-8926
DOI - 10.37236/6101
Subject(s) - van der waerden's theorem , combinatorics , conjecture , mathematics , arithmetic progression , term (time) , physics , quantum mechanics
The \emph{anti-van der Waerden number}, denoted by $aw([n],k)$, is the smallest $r$ such that every exact $r$-coloring of $[n]$ contains a rainbow $k$-term arithmetic progression. Butler et. al. showed that $\lceil \log_3 n \rceil + 2 \le aw([n],3) \le \lceil \log_2 n \rceil + 1$, and conjectured that there exists a constant $C$ such that $aw([n],3) \le \lceil \log_3 n \rceil + C$. In this paper, we show this conjecture is true by determining $aw([n],3)$ for all $n$. We prove that for $7\cdot 3^{m-2}+1 \leq n \leq 21 \cdot 3^{m-2}$, \[ aw([n],3)=\left\{\begin{array}{ll} m+2, & \mbox{if $n=3^m$}\\ m+3, & \mbox{otherwise}. \end{array}\right.\]
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom