z-logo
open-access-imgOpen Access
Directed Rooted Forests in Higher Dimension
Author(s) -
Olivier Bernardi,
Caroline J. Klivans
Publication year - 2016
Publication title -
the electronic journal of combinatorics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.703
H-Index - 52
eISSN - 1097-1440
pISSN - 1077-8926
DOI - 10.37236/5819
Subject(s) - mathematics , dimension (graph theory) , laplacian matrix , combinatorics , graph , eigenvalues and eigenvectors , laplace operator , discrete mathematics , mathematical analysis , physics , quantum mechanics
For a graph G, the generating function of rooted forests, counted by the number of connected components, can be expressed in terms of the eigenvalues of the graph Laplacian. We generalize this result from graphs to cell complexes of arbitrary dimension. This requires generalizing the notion of rooted forest to higher dimension. We also introduce orientations of higher dimensional rooted trees and forests. These orientations are discrete vector fields which lead to open questions concerning expressing homological quantities combinatorially.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom