z-logo
open-access-imgOpen Access
Connectivity of some Algebraically Defined Digraphs
Author(s) -
Aleksandr Kodess,
Felix Lazebnik
Publication year - 2015
Publication title -
the electronic journal of combinatorics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.703
H-Index - 52
eISSN - 1097-1440
pISSN - 1077-8926
DOI - 10.37236/5052
Subject(s) - combinatorics , algebraically closed field , mathematics , vertex (graph theory) , digraph , finite field , integer (computer science) , prime (order theory) , discrete mathematics , graph , computer science , programming language
Let $p$ be a prime, $e$ a positive integer, $q = p^e$, and let $\mathbb{F}_q$ denote the finite field of $q$ elements. Let $f_i\colon\mathbb{F}_q^2\to\mathbb{F}_q$ be arbitrary functions, where $1\le i\le l$, $i$ and $l$ are integers. The digraph $D = D(q;\bf{f})$, where ${\bf f}=f_1,\dotso,f_l)\colon\mathbb{F}_q^2\to\mathbb{F}_q^l$, is defined as follows. The vertex set of $D$ is $\mathbb{F}_q^{l+1}$. There is an arc from a vertex ${\bf x} = (x_1,\dotso,x_{l+1})$ to a vertex ${\bf y} = (y_1,\dotso,y_{l+1})$ if $x_i + y_i = f_{i-1}(x_1,y_1)$ for all $i$, $2\le i \le l+1$. In this paper we study the strong connectivity of $D$ and completely describe its strong components. The digraphs $D$ are directed analogues of some algebraically defined graphs, which have been studied extensively and have many applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom