A propos des sphères sous-riemanniennes
Author(s) -
Ludovic Rifford
Publication year - 2006
Publication title -
bulletin of the belgian mathematical society - simon stevin
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.36
H-Index - 31
eISSN - 2034-1970
pISSN - 1370-1444
DOI - 10.36045/bbms/1161350693
Subject(s) - lipschitz continuity , mathematics , spheres , diagonal , radius , pure mathematics , function (biology) , mathematical analysis , lipschitz domain , combinatorics , geometry , physics , computer science , computer security , astronomy , evolutionary biology , biology
Nous démontrons qu’en l’absence de courbe minimisante singulilère, la fonction distance sous-riemannienne, localement lipschitzienne hors de la diagonale, vérifie un théorème de Sard. On en déduit que les sphères sous-riemanniennes sont des hypersurfaces lipschitziennes pour presque tout rayon dans dSR(q0, Q). Abstract. We prove that, in absence of singular minimizing curve, the sub-riemannian distance function is locally Lipschitz outside the diagonal and satisfies Sard’s theorem. Hence we deduce that the spheres are Lipschitz hypersurfaces for almost every radius in dSR(q0, Q). We prove that, in absence of singular minimizing curve, the sub-riemannian distance function is locally Lipschitz outside the diagonal and satisfies Sard’s theorem. Hence we deduce that the spheres are Lipschitz hypersurfaces for almost every radius in dSR(q0, Q).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom