Fonctions topicales et causalité
Author(s) -
Thierry Bousch
Publication year - 2006
Publication title -
bulletin of the belgian mathematical society - simon stevin
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.36
H-Index - 31
eISSN - 2034-1970
pISSN - 1370-1444
DOI - 10.36045/bbms/1161350690
Subject(s) - monotonic function , asymptote , homogeneity (statistics) , property (philosophy) , mathematics , pure mathematics , transformation (genetics) , mathematical analysis , statistics , epistemology , chemistry , gene , philosophy , biochemistry
Beside the classical properties of monotonicity and additive homogeneity, the functions modelling the evolution of discrete event systems usually have a third property, which expresses the causal (i.e. non-anticipative) character of the transformation. These \causal" topical functions are always uniformly topical, in particular they have an asymptote and, for endofunctions, a spectral vector. R esum e Outre les propri et es classiques de croissance et d’homog en eit e additive, les fonctions mod elisant l’ evolution des syst emes a ev enements discrets pr esentent habituellement une troisi eme propri et e, exprimant le caract ere causal (i.e. non-anticipatif) de la transformation. Ces fonctions topicales \causales" sont toujours uniform ement topicales, en particulier elles ont une asymptote et, pour les endofonctions, un vecteur spectral.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom