Highly Stable Nonhydroxyl Antisolvent Polymer Dielectric: A New Strategy towards High-Performance Low-Temperature Solution-Processed Ultraflexible Organic Transistors for Skin-Inspired Electronics
Author(s) -
Mingxin Zhang,
Cong Zhang,
Yahan Yang,
Hang Ren,
Junmo Zhang,
Xiaoli Zhao,
Yanhong Tong,
Qingxin Tang,
Yichun Liu
Publication year - 2021
Publication title -
research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.8
H-Index - 16
ISSN - 2639-5274
DOI - 10.34133/2021/9897353
Subject(s) - materials science , transistor , electronics , polymer , organic electronics , dielectric , flexible electronics , optoelectronics , nanotechnology , electrical engineering , composite material , engineering , voltage
Scarcity of the antisolvent polymer dielectrics and their poor stability have significantly prevented solution-processed ultraflexible organic transistors from low-temperature, large-scale production for applications in low-cost skin-inspired electronics. Here, we present a novel low-temperature solution-processed PEI-EP polymer dielectric with dramatically enhanced thermal stability, humidity stability, and frequency stability compared with the conventional PVA/c-PVA and c-PVP dielectrics, by incorporating polyethyleneimine PEI as crosslinking sites in nonhydroxyl epoxy EP. The PEI-EP dielectric requires a very low process temperature as low as 70°C and simultaneously possesses the high initial decomposition temperature (340°C) and glass transition temperature (230°C), humidity-resistant dielectric properties, and frequency-independent capacitance. Integrated into the solution-processed C8-BTBT thin-film transistors, the PEI-EP dielectric enables the device stable operation in air within 2 months and in high-humidity environment from 20 to 100% without significant performance degradation. The PEI-EP dielectric transistor array also presents weak hysteresis transfer characteristics, excellent electrical performance with 100% operation rate, high mobility up to 7.98 cm 2 V -1 s -1 (1 Hz) and average mobility as high as 5.3 cm 2 V -1 s -1 (1 Hz), excellent flexibility with the normal operation at the bending radius down to 0.003 mm, and foldable and crumpling-resistant capability. These results reveal the great potential of PEI-EP polymer as dielectric of low-temperature solution-processed ultraflexible organic transistors and open a new strategy for the development and applications of next-generation low-cost skin electronics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom