z-logo
open-access-imgOpen Access
Origami Folding by Multifingered Hands with Motion Primitives
Author(s) -
Akio Namiki,
Shuichi Yokosawa
Publication year - 2021
Publication title -
cyborg and bionic systems
Language(s) - English
Resource type - Journals
eISSN - 2097-1087
pISSN - 2692-7632
DOI - 10.34133/2021/9851834
Subject(s) - folding (dsp implementation) , motion (physics) , computer science , computer vision , human–computer interaction , artificial intelligence , engineering , mechanical engineering
Origami , a traditional Japanese art, is an example of superior handwork produced by human hands. Achieving such extreme dexterity is one of the goals of robotic technology. In the work described in this paper, we developed a new general-purpose robot system with sufficient capabilities for performing Origami . We decomposed the complex folding motions into simple primitives and generated the overall motion as a combination of these primitives. Also, to measure the paper deformation in real-time, we built an estimator using a physical simulator and a depth camera. As a result, our experimental system achieved consecutive valley folds and a squash fold.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom