Origami Folding by Multifingered Hands with Motion Primitives
Author(s) -
Akio Namiki,
Shuichi Yokosawa
Publication year - 2021
Publication title -
cyborg and bionic systems
Language(s) - English
Resource type - Journals
eISSN - 2097-1087
pISSN - 2692-7632
DOI - 10.34133/2021/9851834
Subject(s) - folding (dsp implementation) , motion (physics) , computer science , computer vision , human–computer interaction , artificial intelligence , engineering , mechanical engineering
Origami , a traditional Japanese art, is an example of superior handwork produced by human hands. Achieving such extreme dexterity is one of the goals of robotic technology. In the work described in this paper, we developed a new general-purpose robot system with sufficient capabilities for performing Origami . We decomposed the complex folding motions into simple primitives and generated the overall motion as a combination of these primitives. Also, to measure the paper deformation in real-time, we built an estimator using a physical simulator and a depth camera. As a result, our experimental system achieved consecutive valley folds and a squash fold.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom