z-logo
open-access-imgOpen Access
Electrochemical Mechanism of Al Metal–Organic Battery Based on Phenanthrenequinone
Author(s) -
Jan Bitenc,
Urban Košir,
Alen Vižintin,
Niklas Lindahl,
Andraž Krajnc,
Klemen Pirnat,
Ivan Jerman,
Robert Dominko
Publication year - 2021
Publication title -
energy material advances
Language(s) - English
Resource type - Journals
eISSN - 2097-1133
pISSN - 2692-7640
DOI - 10.34133/2021/9793209
Subject(s) - electrochemistry , battery (electricity) , cathode , organic radical battery , chemistry , redox , metal , chemical engineering , x ray photoelectron spectroscopy , electrode , aluminium , inorganic chemistry , organic chemistry , thermodynamics , power (physics) , physics , engineering
Al metal-organic batteries are a perspective high-energy battery technology based on abundant materials. However, the practical energy density of Al metal-organic batteries is strongly dependent on its electrochemical mechanism. Energy density is mostly governed by the nature of the aluminium complex ion and utilization of redox activity of the organic group. Although organic cathodes have been used before, detailed study of the electrochemical mechanism is typically not the primary focus. In the present work, electrochemical mechanism of Al metal-phenanthrenequinone battery is investigated with a range of different analytical techniques. Firstly, its capacity retention is optimized through the preparation of insoluble cross-coupled polymer, which exemplifies extremely low capacity fade and long-term cycling stability. Ex situ and operando ATR-IR confirm that reduction of phenanthrenequinone group proceeds through the two-electron reduction of carbonyl groups, which was previously believed to exchange only one-electron, severely limiting cathode capacity. Nature of aluminium complex ion interacting with organic cathode is determined through multiprong approach using SEM-EDS, XPS, and solid-state NMR, which all point to the dominant contribution of AlCl 2+ cation. Upon full capacity utilization, Al metal-polyphenanthrenequinone battery utilizing AlCl 2+ offers an energy density of more than 200 Wh/kg making it a viable solution for stationary electrical energy storage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom