A Computational Comparison of Ether and Ester Electrolyte Stability on a Ca Metal Anode
Author(s) -
Diana Liepinya,
Manuel Smeu
Publication year - 2021
Publication title -
energy material advances
Language(s) - English
Resource type - Journals
eISSN - 2097-1133
pISSN - 2692-7640
DOI - 10.34133/2021/9769347
Subject(s) - electrolyte , tetrahydrofuran , decomposition , chemistry , solvent , anode , inorganic chemistry , organic chemistry , electrode
Ca-ion batteries (CIBs) have the potential to provide inexpensive energy storage, but their realization is impeded by the lack of suitable electrolytes. Motivated by recent experimental progress, we perform ab initio molecular dynamics simulations to investigate early decomposition reactions at the anode-electrolyte interface. By examining different combinations of solvent—tetrahydrofuran (THF) or ethylene carbonate (EC)—and salt—Ca(BH 4 ) 2 , Ca(BF 4 ) 2 , Ca(BCl 4 ) 2 , and Ca(ClO 4 ) 2 —we identify a variety of behavioral trends between electrolyte solutions. Next, we perform a separate trajectory with pure THF and gradually increased negative charge; despite an addition of -32 e , no THF decomposition is detected. Charge analysis reveals that in a reductive environment, THF distributes excess charge evenly across its hydrocarbon backbone, while EC concentrates charge on its ester oxygens and carbonyl carbon, resulting in decomposition. Graphs of charge vs. time for both solvents reveal that EC decomposition products can be reduced by up to five electrons, while those of THF are limited to a single electron. Ultimately, we find Ca(BH 4 ) 2 and THF to be the most stable solution investigated herein, corroborating experimental evidence of its suitability as a CIB electrolyte.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom