z-logo
open-access-imgOpen Access
Tunable Negative Poisson’s Ratio in Van der Waals Superlattice
Author(s) -
Xiaowen Li,
Xiao-Bin Qiang,
Zhenhao Gong,
Yubo Zhang,
Peng-Lai Gong,
Lang Chen
Publication year - 2021
Publication title -
research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.8
H-Index - 16
ISSN - 2639-5274
DOI - 10.34133/2021/1904839
Subject(s) - superlattice , van der waals force , materials science , graphene , condensed matter physics , physics , nanotechnology , quantum mechanics , molecule
Negative Poisson's ratio (NPR) materials are functional and mechanical metamaterials that shrink (expand) longitudinally after being compressed (stretched) laterally. By using first-principles calculations, we found that Poisson's ratio can be tuned from near zero to negative by different stacking modes in van der Waals (vdW) graphene/hexagonal boron nitride (G/ h -BN) superlattice. We attribute the NPR effect to the interaction of p z orbitals between the interfacial layers. Furthermore, a parameter calculated by analyzing the electronic band structure, namely, distance-dependent hopping integral, is used to describe the intensity of this interaction. We believe that this mechanism is not only applicable to G/ h -BN superlattice but can also explain and predict the NPR effect in other vdW layered superlattices. Therefore, the NPR phenomenon, which was relatively rare in 3D and 2D materials, can be realized in the vdW superlattices by different stacking orders. The combinations of tunable NPRs with the excellent electrical/optical properties of 2D vdW superlattices will pave a novel avenue to a wide range of multifunctional applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom