Mitochondria and Coenzyme Q10 in the Pathogenesis of Preeclampsia
Author(s) -
Enrique Terán,
Isabel Hernández,
Leandro Tana,
Santiago Terán,
Carlos Galaviz-Hernandez,
Martha SosaMacías,
Gustavo Otoboni Molina,
Andrés Calle
Publication year - 2018
Publication title -
frontiers in physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.32
H-Index - 102
ISSN - 1664-042X
DOI - 10.3389/fphys.2018.01561
Subject(s) - preeclampsia , placentation , coenzyme q10 , mitochondrion , medicine , pregnancy , bioinformatics , pathogenesis , intensive care medicine , biology , fetus , placenta , immunology , microbiology and biotechnology , genetics
Hypertensive disorders during pregnancy constitute one of the main causes of maternal and perinatal morbidity and mortality across the world and particularly in developing countries such as Ecuador. However, despite its impact on public health, the primary pathophysiological processes involved are yet to be elucidated. It has been proposed, among other theories, that an abnormal placentation may induce an endothelial dysfunction, which is ultimately responsible for the final clinical manifestations. Mitochondria, particularly from trophoblastic cells, are responsible for the production of energy, which is extremely important for normal placentation. The malfunction in this supply of energy may produce higher levels of free radicals. In both production of energy and free radicals, coenzyme Q10 (CoQ10) plays a crucial role in electron transport. As such, the role of CoQ10 in the genesis and prevention of preeclampsia has become the focus of a number of research groups, including that of the authors. Developing an in-depth understanding of these mechanisms might allow us to design new and feasible strategies with which we can reduce preeclampsia, particularly in the Latin-American countries.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom