z-logo
open-access-imgOpen Access
Metabolomics Study of the Biochemical Changes in the Plasma of Myocardial Infarction Patients
Author(s) -
Mingdan Zhu,
Yanqi Han,
Yu Zhang,
Shaoqiang Zhang,
Congcong Wei,
Zidong Cong,
Wuxun Du
Publication year - 2018
Publication title -
frontiers in physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.32
H-Index - 102
ISSN - 1664-042X
DOI - 10.3389/fphys.2018.01017
Subject(s) - myocardial infarction , metabolomics , medicine , cardiology , bioinformatics , biology
Myocardial infarction (MI) is a common and multifactorial disease that has the highest morbidity and mortality in the world. Although a number of physiological, pathological, and functional parameters have been investigated, only scarce information regarding the changes of small metabolites in the plasma has been reported, and this lack of information may cause poor MI diagnosis and treatment. In the present study, we aimed to investigate the metabolic profiles of plasma samples from MI patients to identify potential disease biomarkers and to study the pathology of MI. Metabolic profiles of the plasma of 30 MI patients and 30 controls were obtained using ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. The resulting data were processed using pattern recognition approaches, including principal component analysis and partial least squares-discriminant analysis, to identify the metabolites that differed between the groups. Significant differences in the plasma levels of the following 10 metabolites were observed in the MI patients compared with the controls: phosphatidylserine, C16-sphingosine, N -methyl arachidonic amide, N -(2-methoxyethyl) arachidonic amide, linoleamidoglycerophosphate choline, lyso-PC (C18:2), lyso-PC (C16:0), lyso-PC (C18:1), arachidonic acid, and linoleic acid. The changes in these 10 biomarkers indicated perturbations of energy metabolism, phospholipid metabolism, and fatty acid metabolism in the MI patients. These findings hold promise to advance the treatment, diagnosis, and prevention of MI.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom