z-logo
open-access-imgOpen Access
The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency
Author(s) -
Océane Sorel,
Benjamin G Dewals
Publication year - 2019
Publication title -
frontiers in microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.701
H-Index - 135
ISSN - 1664-302X
DOI - 10.3389/fmicb.2018.03315
Subject(s) - biology , genome , virus latency , immune system , gene , evasion (ethics) , genetics , virus , computational biology , mhc class i , virology , major histocompatibility complex , microbiology and biotechnology , viral replication
Gammaherpesviruses are important pathogens that establish latent infection in their natural host for lifelong persistence. During latency, the viral genome persists in the nucleus of infected cells as a circular episomal element while the viral gene expression program is restricted to non-coding RNAs and a few latency proteins. Among these, the genome maintenance protein (GMP) is part of the small subset of genes expressed in latently infected cells. Despite sharing little peptidic sequence similarity, gammaherpesvirus GMPs have conserved functions playing essential roles in latent infection. Among these functions, GMPs have acquired an intriguing capacity to evade the cytotoxic T cell response through self-limitation of MHC class I-restricted antigen presentation, further ensuring virus persistence in the infected host. In this review, we provide an updated overview of the main functions of gammaherpesvirus GMPs during latency with an emphasis on their immune evasion properties.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom