Hematopoietic Cytokine Gene Duplication in Zebrafish Erythroid and Myeloid Lineages
Author(s) -
Jana Oltová,
Ondřej Svoboda,
Petr Bartůněk
Publication year - 2018
Publication title -
frontiers in cell and developmental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.452
H-Index - 53
ISSN - 2296-634X
DOI - 10.3389/fcell.2018.00174
Subject(s) - zebrafish , gene duplication , biology , haematopoiesis , gene , myeloid , genetics , gene family , genome , computational biology , stem cell , immunology
Hematopoiesis is a precisely orchestrated process regulated by the activity of hematopoietic cytokines and their respective receptors. Due to an extra round of whole genome duplication during vertebrate evolution in teleost fish, zebrafish have two paralogs of many important genes, including genes involved in hematopoiesis. Importantly, these duplication events brought increased level of complexity in such cases, where both ligands and receptors have been duplicated in parallel. Therefore, precise understanding of binding specificities between duplicated ligand-receptor signalosomes as well as understanding of their differential expression provide an important basis for future studies to better understand the role of duplication of these genes. However, although many recent studies in the field have partly addressed functional redundancy or sub-specialization of some of those duplicated paralogs, this information remains to be scattered over many publications and unpublished data. Therefore, the focus of this review is to provide an overview of recent findings in the zebrafish hematopoietic field regarding activity, role and specificity of some of the hematopoietic cytokines with emphasis on crucial regulators of the erythro-myeloid lineages.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom