z-logo
open-access-imgOpen Access
The Structure of Digroups
Author(s) -
Catherine Crompton,
Linda Scalici
Publication year - 2006
Publication title -
american journal of undergraduate research
Language(s) - English
Resource type - Journals
eISSN - 2375-8732
pISSN - 1536-4585
DOI - 10.33697/ajur.2006.016
Subject(s) - axiom , binary operation , associative property , set (abstract data type) , algebra over a field , mathematics , set theory , pure mathematics , discrete mathematics , computer science , geometry , programming language
A digroup is an algebra defined on a set having two associative binary operations, ⊢ and ⊣. Digroups play an important role in an open problem in the theory of Leibniz algebras. We present a brief overview of digroups and a set of more general axioms for a digroup than used previously. We then consider several properties of a digroup having distinct elements a and b such that a ⊢ b = b ⊢ a, but a ⊢ b ≠ a ⊣ b.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom