The Structure of Digroups
Author(s) -
Catherine Crompton,
Linda Scalici
Publication year - 2006
Publication title -
american journal of undergraduate research
Language(s) - English
Resource type - Journals
eISSN - 2375-8732
pISSN - 1536-4585
DOI - 10.33697/ajur.2006.016
Subject(s) - axiom , binary operation , associative property , set (abstract data type) , algebra over a field , mathematics , set theory , pure mathematics , discrete mathematics , computer science , geometry , programming language
A digroup is an algebra defined on a set having two associative binary operations, ⊢ and ⊣. Digroups play an important role in an open problem in the theory of Leibniz algebras. We present a brief overview of digroups and a set of more general axioms for a digroup than used previously. We then consider several properties of a digroup having distinct elements a and b such that a ⊢ b = b ⊢ a, but a ⊢ b ≠ a ⊣ b.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom