Genes that control vaccinia virus immunogenicity
Author(s) -
С. Н. Щелкунов,
G. A. Shchelkunova
Publication year - 2020
Publication title -
acta naturae
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 26
ISSN - 2075-8251
DOI - 10.32607/actanaturae.10935
Subject(s) - vaccinia , immunogenicity , smallpox vaccine , smallpox , virology , orthopoxvirus , vaccination , immunity , modified vaccinia ankara , immune system , virus , attenuated vaccine , immunology , biology , population , medicine , gene , recombinant dna , genetics , environmental health , virulence
The live smallpox vaccine was a historical first and highly effective vaccine. However, along with high immunogenicity, the vaccinia virus (VACV) caused serious side effects in vaccinees, sometimes with lethal outcomes. Therefore, after global eradication of smallpox, VACV vaccination was stopped. For this reason, most of the human population worldwide lacks specific immunity against not only smallpox, but also other zoonotic orthopoxviruses. Outbreaks of diseases caused by these viruses have increasingly occurred in humans on different continents. However, use of the classical live VACV vaccine for prevention against these diseases is unacceptable because of potential serious side effects, especially in individuals with suppressed immunity or immunodeficiency (e.g., HIV-infected patients). Therefore, highly attenuated VACV variants that preserve their immunogenicity are needed. This review discusses current ideas about the development of a humoral and cellular immune response to orthopoxvirus infection/vaccination and describes genetic engineering approaches that could be utilized to generate safe and highly immunogenic live VACV vaccines.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom