z-logo
open-access-imgOpen Access
On Using Incremental Encodings in Unsatisfiability-based MaxSAT Solving
Author(s) -
Ruben Martins,
Saurabh Joshi,
Vasco Manquinho,
Inês Lynce
Publication year - 2015
Publication title -
journal on satisfiability boolean modeling and computation
Language(s) - English
Resource type - Journals
eISSN - 1875-5011
pISSN - 1574-0617
DOI - 10.3233/sat190102
Subject(s) - maximum satisfiability problem , computer science , algorithm , theoretical computer science , mathematics , boolean function
In recent years, unsatisfiability-based algorithms have become prevalent as state of the art for solving industrial instances of Maximum Satisfiability (MaxSAT). These algorithms perform a succession of unsatisfiable SAT solver calls until an optimal solution is found. In several of these algorithms, cardinality or pseudo-Boolean constraints are extended between iterations. However, in most cases, the formula provided to the SAT solver in each iteration must be rebuilt and no knowledge is reused from one iteration to the next. This paper describes how to implement incremental unsatisfiability-based algorithms for MaxSAT. In particular, we detail and analyze our implementation of the MSU3 algorithm in the OPENWBO framework that performed remarkably well in the MaxSAT Evaluation of 2014. Furthermore, we also propose to extend incrementality to weighted MaxSAT through an incremental encoding of pseudo-Boolean constraints. The experimental results show that the performance of MaxSAT algorithms can be greatly improved by exploiting the learned information and maintaining the internal state of the SAT solver between iterations. Finally, the proposed incremental encodings of cardinality and pseudo-Boolean constraints are not exclusive for MaxSAT usage and can be used in other domains.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom