z-logo
open-access-imgOpen Access
Degrees that Are Low for Isomorphism
Author(s) -
Johan. Y. Franklin,
Reed Solomon
Publication year - 2014
Publication title -
computability
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.136
H-Index - 12
eISSN - 2211-3576
pISSN - 2211-3568
DOI - 10.3233/com-140027
Subject(s) - isomorphism (crystallography) , mathematics , crystallography , chemistry , crystal structure
We say that a degree is low for isomorphism if, whenever it can compute an isomorphism between a pair of computable structures, there is already a computable isomorphism between them. We show that while there is no clear-cut relationship between this property and other properties related to computational weakness, the low-forisomorphism degrees contain all Cohen 2-generics and are disjoint from the Martin-Lof randoms. We also consider lowness for isomorphism with respect to the class of linear orders.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom