z-logo
open-access-imgOpen Access
Mining Clinicians' Electronic Documentation to Identify Heart Failure Patients with Ineffective Self-Management: A Pilot Text-Mining Study
Author(s) -
Maxim Topaz,
Kavita Radhakrishnan,
Victor J. Lei,
Li Zhou
Publication year - 2016
Publication title -
studies in health technology and informatics
Language(s) - English
DOI - 10.3233/978-1-61499-658-3-856
Effective self-management can decrease up to 50% of heart failure hospitalizations. Unfortunately, self-management by patients with heart failure remains poor. This pilot study aimed to explore the use of text-mining to identify heart failure patients with ineffective self-management. We first built a comprehensive self-management vocabulary based on the literature and clinical notes review. We then randomly selected 545 heart failure patients treated within Partners Healthcare hospitals (Boston, MA, USA) and conducted a regular expression search with the compiled vocabulary within 43,107 interdisciplinary clinical notes of these patients. We found that 38.2% (n = 208) patients had documentation of ineffective heart failure self-management in the domains of poor diet adherence (28.4%), missed medical encounters (26.4%) poor medication adherence (20.2%) and non-specified self-management issues (e.g., "compliance issues", 34.6%). We showed the feasibility of using text-mining to identify patients with ineffective self-management. More natural language processing algorithms are needed to help busy clinicians identify these patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom