z-logo
open-access-imgOpen Access
Intraoperative infrared imaging of brain tumors
Author(s) -
Alexander M. Gorbach,
John D. Heiss,
Leonid Kopylev,
Edward H. Oldfield
Publication year - 2004
Publication title -
journal of neurosurgery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.564
H-Index - 210
eISSN - 1933-0693
pISSN - 0022-3085
DOI - 10.3171/jns.2004.101.6.0960
Subject(s) - medicine , brain tumor , cortex (anatomy) , blood flow , cerebral blood flow , lesion , meningioma , pathology , radiology , anesthesia , neuroscience , biology
Object. Although clinical imaging defines the anatomical relationship between a brain tumor and the surrounding brain and neurological deficits indicate the neurophysiological consequences of the tumor, the effect of a brain tumor on vascular physiology is less clear. Methods. An infrared camera was used to measure the temperature of the cortical surface before, during, and after removal of a mass in 34 patients (primary brain tumor in 21 patients, brain metastases in 10 and falx meningioma, cavernous angioma, and radiation necrosis—astrocytosis in one patient each). To establish the magnitude of the effect on blood flow induced by the tumor, the images were compared with those from a group of six patients who underwent temporal lobectomy for epilepsy. In four cases a cerebral artery was temporarily occluded during the course of the surgery and infrared emissions from the cortex before and after occlusion were compared to establish the relationship of local temperature to regional blood flow. Discrete temperature gradients were associated with surgically verified lesions in all cases. Depending on the type of tumor, the cortex overlying the tumor was either colder or warmer than the surrounding cortex. Spatial reorganization of thermal gradients was observed after tumor resection. Temperature gradients of the cortex in patients with tumors exceeded those measured in the cortex of patients who underwent epilepsy surgery. Conclusions. Brain tumors induce changes in cerebral blood flow (CBF) in the cortex, which can be made visible by performing infrared imaging during cranial surgery. A reduction in CBF beyond the tumor margin improves after removal of the lesion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here