z-logo
open-access-imgOpen Access
Stereotactic electroencephalography with temporal grid and mesial temporal depth electrode coverage: does technique of depth electrode placement affect outcome?
Author(s) -
Jamie J. Van Gompel,
Fredric B. Meyer,
W. Richard Marsh,
Kendall H. Lee,
Gregory A. Worrell
Publication year - 2010
Publication title -
journal of neurosurgery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.564
H-Index - 210
eISSN - 1933-0693
pISSN - 0022-3085
DOI - 10.3171/2009.12.jns091073
Subject(s) - electroencephalography , medicine , electrode , affect (linguistics) , communication , psychology , psychiatry , chemistry
Object Intracranial monitoring for temporal lobe seizure localization to differentiate neocortical from mesial temporal onset seizures requires both neocortical subdural grids and hippocampal depth electrode implantation. There are 2 basic techniques for hippocampal depth electrode implantation. This first technique uses a stereotactically guided 8-contact depth electrode directed along the long axis of the hippocampus to the amygdala via an occipital bur hole. The second technique involves direct placement of 2 or 3 4-contact depth electrodes perpendicular to the temporal lobe through the middle temporal gyrus and overlying subdural grid. The purpose of this study was to determine whether one technique was superior to the other by examining monitoring success and complications. Methods Between 1997 and 2005, 41 patients underwent invasive seizure monitoring with both temporal subdural grids and depth electrodes placed in 2 ways. Patients in Group A underwent the first technique, and patients in Group B underwent the second technique. Results Group A consisted of 26 patients and Group B 15 patients. There were no statistically significant differences between Groups A and B regarding demographics, monitoring duration, seizure localization, or outcome (Engel classification). There was a statistically significant difference at the point in time at which these techniques were used: Group A represented more patients earlier in the series than Group B (p < 0.05). The complication rate attributable to the grids and depth electrodes was 0% in each group. It was more likely that the depth electrodes were placed through the grid if there was a prior resection and the patient was undergoing a new evaluation (p < 0.05). Furthermore, Group A procedures took significantly longer than Group B procedures. Conclusions In this patient series, there was no difference in efficacy of monitoring, complications, or outcome between hippocampal depth electrodes placed laterally through temporal grids or using an occipital bur hole stereotactic approach. Placement of the depth electrodes perpendicularly through the grids and middle temporal gyrus is technically more practical because multiple head positions and redraping are unnecessary, resulting in shorter operative times with comparable results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here