Stochastic integral characterizations of semi-selfdecomposable distributions and related Ornstein-Uhlenbeck type processes
Author(s) -
Makoto Maejima,
Yohei Ueda
Publication year - 2009
Publication title -
communications on stochastic analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.224
H-Index - 10
eISSN - 2688-6669
pISSN - 0973-9599
DOI - 10.31390/cosa.3.3.03
Subject(s) - ornstein–uhlenbeck process , type (biology) , mathematics , statistical physics , stochastic process , physics , statistics , geology , paleontology
In this paper, three topics on semi-selfdecomposable distributions are studied. The first one is to characterize semi-selfdecomposable distributions by stochastic integrals with respect to Levy processes. This characterization defines a mapping from an infinitely divisible distribution with finite log-moment to a semi-selfdecomposable distribution. The second one is to introduce and study a Langevin type equation and the corresponding Ornstein-Uhlenbecktype process whose limiting distribution is semi-selfdecomposable. Also, semi-stationary Ornstein-Uhlenbeck type processes with semi-selfdecomposable distributions are constructed. The third one is to study the iteration of the mapping above. The iterated mapping is expressed as a single mapping with a different integrand. Also, nested subclasses of the class of semi-selfdecomposable distributions are considered, andit is shown that the limit of these nested subclasses is the closure of the class of semi-stable distributions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom