z-logo
open-access-imgOpen Access
Stochastic integral characterizations of semi-selfdecomposable distributions and related Ornstein-Uhlenbeck type processes
Author(s) -
Makoto Maejima,
Yohei Ueda
Publication year - 2009
Publication title -
communications on stochastic analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.224
H-Index - 10
eISSN - 2688-6669
pISSN - 0973-9599
DOI - 10.31390/cosa.3.3.03
Subject(s) - ornstein–uhlenbeck process , type (biology) , mathematics , statistical physics , stochastic process , physics , statistics , geology , paleontology
In this paper, three topics on semi-selfdecomposable distributions are studied. The first one is to characterize semi-selfdecomposable distributions by stochastic integrals with respect to Levy processes. This characterization defines a mapping from an infinitely divisible distribution with finite log-moment to a semi-selfdecomposable distribution. The second one is to introduce and study a Langevin type equation and the corresponding Ornstein-Uhlenbecktype process whose limiting distribution is semi-selfdecomposable. Also, semi-stationary Ornstein-Uhlenbeck type processes with semi-selfdecomposable distributions are constructed. The third one is to study the iteration of the mapping above. The iterated mapping is expressed as a single mapping with a different integrand. Also, nested subclasses of the class of semi-selfdecomposable distributions are considered, andit is shown that the limit of these nested subclasses is the closure of the class of semi-stable distributions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom