Modeling and control to improve blood glucose concentration for people with diabetes
Author(s) -
Yong Mei
Publication year - 2017
Language(s) - English
Resource type - Dissertations/theses
DOI - 10.31274/etd-180810-5731
Subject(s) - diabetes mellitus , control (management) , medicine , computer science , endocrinology , artificial intelligence
Diabetes mellitus is a chronical condition that features either the lack of insulin or increased insulin resistance. It is a disorder in the human metabolic system. To combat insufficiency of insulin released by pancreas, a closed-loop control system, also known as artificial pancreas (AP) in this application, have been created to mimic the functionality of a human pancreas. An AP is used to regulate blood glucose concentration (BGC) by managing the release of insulin. Therefore, an algorithm, which can administer insulin to reduce the variation of BGC and minimize the occurrences of hyper-/ hypoglycemia episodes, is the key component of an AP. The objective of the dissertation is to develop an optimal algorithm to better control BGC for people with diabetes. For people with Type 2 diabetes, prevention or treatment of diabetes mellitus can typically be done via a change of lifestyle and weight management. A virtual sensing system that does not require many manual inputs from patients can ease the burden for people with Type 2 diabetes. This dissertation covers the development of a monitoring system for Type 2 diabetes. To achieve the goal of tighter control of BGC for people with Type 1 diabetes, dynamic modeling methodology for capturing the cause-and-effect relationship between manipulated variable (i.e. insulin) and controlled variable (i.e. BGC) has been developed. Theoretically, this dissertation has established that physiologically based nonlinear parameterized wiener models being superior to nonlinear autoregressive moving average with exogenous inputs (NARMAX) models in capturing dynamic relationships in processes with correlated inputs. Based on these results, wiener models have been applied in the modeling of BGC for real subjects with Type 1 diabetes under free-living conditions. With promising results shown in wiener models, an
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom