z-logo
open-access-imgOpen Access
Stabilization of Al-Rustamiya Waste Water Treatment Plant Sludge Using Lime
Author(s) -
Noor A. Jasim,
Jathwa Abdul Kareem Ibrahim
Publication year - 2020
Publication title -
journal of engineering
Language(s) - English
Resource type - Journals
eISSN - 2520-3339
pISSN - 1726-4073
DOI - 10.31026/j.eng.2020.09.11
Subject(s) - lime , sewage sludge , chemistry , heavy metals , sewage treatment , sewage sludge treatment , pulp and paper industry , mixed liquor suspended solids , activated sludge , waste management , environmental science , environmental chemistry , metallurgy , environmental engineering , materials science , engineering
A study was performed to evaluate heavy metals removal from sewage sludge using lime. The processes of stabilization using alkaline chemicals operating on a simple principle of raising pH to 12 or higher, with sufficient mixing and suitable contact time to ensure that immobilization can reduce heavy metals. A 0.157 m3 tank was designed to treat Al-Rustemeyia wastewater treatment plant sludge. Characteristics of raw sludge were examined through two parameters: pH and heavy metal analysis. Different lime doses of (0- 25) g CaO/100 g sludge were mixed manually with raw sludge in a rotating drum. The samples were analyzed two hours after mixing. pH and heavy metals results were compared with EPA and National Iraqi Standard (NIS). Results showed as lime was added, the concentration of heavy metals decreases the higher the dose, the less heavy metals concentrations in the sludge. Although the concentration of heavy metals in the sludge was among the determinants according to the US Environmental Protection Agency, the results showed that 750 g of lime per 3 kg of sludge had reduced the concentration of heavy metals zinc from (662.934) mg/kg sludge to (452.998) mg/kg sludge, copper from (113.101) mg/kg sludge to (64.981) mg/kg sludge, lead from (91.215) mg/kg sludge to (53.307) mg/kg sludge, nickel from 107.257 mg/kg sludge to (50.478) mg/kg sludge, molybdenum from (13.743) mg/kg sludge to (8.724) mg/kg sludge). At the same time, the dose of 450 g lime per 3 kg of sludge had reduced the concentration of chromium from (110.577) mg/kg sludge to (0) mg/kg sludge.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom