z-logo
open-access-imgOpen Access
Recent glacier recession - A new source of postglacial treeline and climate history in the Swedish Scandes
Author(s) -
Lisa Öberg,
Leif Kullman
Publication year - 2011
Publication title -
landscape online
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.436
H-Index - 14
ISSN - 1865-1542
DOI - 10.3097/lo.201126
Subject(s) - subfossil , glacier , physical geography , glacial period , snow , ice field , holocene climatic optimum , climate change , geology , meltwater , radiocarbon dating , climatology , environmental science , holocene , geography , oceanography , geomorphology , paleontology
Climate warming during the past century has imposed recession of glaciers and perennial snow/ice patches along the entire Swedish Scandes. On the newly exposed forefields, subfossil wood remnants are being outwashed from beneath ice and snow bodies. In Scandinavia, this kind of detrital wood is a previously unused source of postglacial vegetation and climate history. The present study reports radiocarbon dates of a set of 78 wood samples, retrieved from three main sites, high above modern treelines and stretching along the Swedish Scandes. In accord with previous studies, pine (Pinus sylvestris) colonized early emerging nunataks already during the Late Glacial. Around 9600-9500 cal. yr BP a first massive wave of tree establishment, birch and pine, took place in "empty" glacier cirques. Both species grew 400-600 m above their present-ay treeline position and the summer temperatures may have been 3.5 °C warmer than present. In respons to Neoglacial cooling, treelines of both birch and pine descended until their final disappearance from the record 4400 and 5900 cal. yr BP, respectively. During the entire interval 9600 to 4400 cal. yr BP, birch prospered in a 100-150 broad belt above the uppermost pines. The recent emergence of tree remnants in the current habitats relates to the contemporary episode of climate warming, possibly unprecedented for several past millennia. It is inferred, by an anology with the past, that in a future scenario with summers 3.5 ° warmer than present, the birch treeline may rise by 600 m or so.Treeline dynamics in short and long term perspectives – observational and historical evidence from the southern Swedish Scande

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom