The Laplace Transform of the Cut-and-Join Equation and the Bouchard–Mariño Conjecture on Hurwitz Numbers
Author(s) -
Bertrand Eynard,
Motohico Mulase,
Bradley Safnuk
Publication year - 2011
Publication title -
publications of the research institute for mathematical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.786
H-Index - 39
eISSN - 1663-4926
pISSN - 0034-5318
DOI - 10.2977/prims/47
Subject(s) - conjecture , laplace transform , mathematics , join (topology) , pure mathematics , mathematical analysis , combinatorics
Author(s): Eynard, Bertrand; Mulase, Motohico; Safnuk, Brad | Abstract: We calculate the Laplace transform of the cut-and-join equation of Goulden, Jackson and Vakil. The result is a polynomial equation that has the topological structure identical to the Mirzakhani recursion formula for the Weil-Petersson volume of the moduli space of bordered hyperbolic surfaces. We find that the direct image of this Laplace transformed equation via the inverse of the Lambert W-function is the topological recursion formula for Hurwitz numbers conjectured by Bouchard and Marino using topological string theory.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom