Entropy Learning in Neural Network
Author(s) -
Geok See Ng,
Daming Shi,
Abdul Wahab,
Harminder Singh
Publication year - 2017
Publication title -
asean journal on science and technology for development
Language(s) - English
Resource type - Journals
eISSN - 2224-9028
pISSN - 0217-5460
DOI - 10.29037/ajstd.362
Subject(s) - artificial neural network , computer science , entropy (arrow of time) , artificial intelligence , machine learning , physics , quantum mechanics
In this paper, entropy term is used in the learning phase of a neural network. As learning progresses, more hidden nodes get into saturation. The early creation of such hidden nodes may impair generalisation. Hence entropy approach is proposed to dampen the early creation of such nodes. The entropy learning also helps to increase the importance of relevant nodes while dampening the less important nodes. At the end of learning, the less important nodes can then be eliminated to reduce the memory requirements of the neural network.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom