z-logo
open-access-imgOpen Access
Between Pure and Approximate Differential Privacy
Author(s) -
Thomas Steinke,
Jonathan Ullman
Publication year - 2017
Publication title -
journal of privacy and confidentiality
Language(s) - English
Resource type - Journals
ISSN - 2575-8527
DOI - 10.29012/jpc.v7i2.648
Subject(s) - differential privacy , upper and lower bounds , mathematics , gaussian , discrete mathematics , logarithm , combinatorics , function (biology) , fraction (chemistry) , constant (computer programming) , computer science , algorithm , physics , mathematical analysis , chemistry , organic chemistry , quantum mechanics , evolutionary biology , biology , programming language
We show a new lower bound on the sample complexity of (e,δ)-differentially private algorithms that accurately answer statistical queries on high-dimensional databases. The novelty of our bound is that it depends optimally on the parameter δ, which loosely corresponds to the probability that the algorithm fails to be private, and is the first to smoothly interpolate between approximate differential privacy (δ u003e0) and pure differential privacy (δ= 0).   Specifically, we consider a database D ∈{±1}n×d and its one-way marginals, which are the d queries of the form “What fraction of individual records have the i-th bit set to +1?” We show that in order to answer all of these queries to within error ±α (on average) while satisfying (e,δ)-differential privacy for some function δ such that δ≥2−o(n) and δ≤1/n1+Ω(1), it is necessary that \[n≥Ω (\frac{√dlog(1/δ)}{αe}).\]  This bound is optimal up to constant factors. This lower bound implies similar new bounds for problems like private empirical risk minimization and private PCA. To prove our lower bound, we build on the connection between fingerprinting codes and lower bounds in differential privacy (Bun, Ullman, and Vadhan, STOC’14).   In addition to our lower bound, we give new purely and approximately differentially private algorithms for answering arbitrary statistical queries that improve on the sample complexity of the standard Laplace and Gaussian mechanisms for achieving worst-case accuracy guarantees by a logarithmic factor.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom